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Vibration analysis of a shaft-bladed
system by using solid models'

CHUNLONG ZHENG?, XUESHI YAOQ??

Abstract. To study the vibration characteristics of a rotating shaft-bladed system, the
spin softening effect of finite element method (FEM) was incorporated with prestress effect to
analyze the shaking, swing, torsion and their coupled vibration. The mathematical formula was
derived from the Coriolis effects and gyroscopic inertia. The study shows that the centrifugal
force exerts influence on the different order vibration frequencies. The effect of the spin softening
has significant influence on the first order swing vibration frequency of the blades, but has little
influence on the shaking and torsion vibration frequencies. With the variation of rotating velocity,
the coupled vibration among shaking, swing and torsion could happen because their vibration
frequencies change with the different magnitude of the increase. The coupled vibration is more
destructive. The shaft’s bending vibration split into forward whirl and backward whirl modes and
the torsional vibration frequency does not change with the increase of the speed. The accuracy
of the solid model and the solution techniques have been demonstrated by comparison with beam
model results of a commercial software. The results further show the complexity of the dynamic
characteristics of the shaft-bladed system. The work is helpful to improve the dynamic stability of
the shaft-bladed system.

Key words. Shaft-bladed system, Coriolis effect, spin softening, swing vibration, coupled
vibration..

1. Introduction

Resonant vibrations of a rotating shaft-bladed system can occur in many engi-
neering structures such as aircraft propellers, helicopter and wind turbine rotors. To
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design the system, we must think of undergoing both global motion and longitudinal
deformation. The coupling between the stress stiffness and deformation makes the
dynamic characteristics of the system more complex, showing a strong nonlinearity.
Due to the rotating speed over the critical speed, the system could have a destructive
and non-synchronous whirl components because of the effects of Coriolis, variable
load and deformation. Strong vibration will cause the accident, and bring about
huge economic losses. In order to meet the engineering requirements, it is in an
urgent need to improve the design level and optimize the shaft-bladed system.
Research on rotor dynamics is continually and steadily expanded in recent years.
The coupled nonlinear equation which takes into account the stiffening effect is de-
rived by applying the Lagrange equation for the moving beam, and based on the
Newmark direct integration method and the Newton-Raphson iteration method, the
computational procedures of the numerical method for solving the nonlinear equa-
tion are given [1].The influence of the curving and twisting of an elongated blade on
its vibrations during complex rotation is studied, and it is shown that these geomet-
rical factors may cause additional resonant vibrations [2].The blades are modeled as
discrete multi-degree-of-freedom systems using the finite element software code AN-
SYS, and ANSYS is used to obtain the stiffness matrices of the blades, allowing the
free vibration characteristics of the rotating blades to be determined by analytical
formulation [3].The cylindrical rotor modes are not influenced by gyroscopic effects
and remain at a fairly constant frequency versus rotor speed. Conversely, conical ro-
tor modes are indeed influenced and caused to split into forward and backward whirl
components that respectively increase and decrease in frequency with increased rotor
speed [4]. Using solid models for the rotor dynamic analysis, the backward whirl is
dominated by spin softening effect compared to the forward whirl frequencies where
the stress stiffening plays a significant role [5-7].The study results on rotor dynamics
provide a necessary foundation for further study on the shaft-bladed system [8-9].

2. Dynamic equation
2.1. Dynamic equation of beam in rotating reference frame

Using the rotating beam model to simulate a blade, the dynamic equation [8] is
[M] iy} + [Ceor] {itr} + {[Ke]® + [Ko]” + [K]"} {ur} = {F} . (1)

Here, [M] is the mass matrix, [Ceo,| denotes the Coriolis matrix, [K.| stands
for the axial-lateral stiffness matrix of Euler-Bernoulli beam element model, [K,]°
represents the stiffness matrix of the centrifugal load corresponding to the angular
velocity, [K]® is the spin softening stiffness matrix and F represents the load vector.
Finally, symbol u, stands for the vector of displacements.

The Coriolis matrix [Ceoy| is given by the formula

[Coor] =2 / PN [ N] do, @)

v
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where [N] is the shape function matrix,

(Cuor) =2 [ IN" (N dv. 3)
Here
0 —w, Wy
—wy W 0

where w, = wy, = 0 and w, = ¥ is the rotating angular velocity p is the density and
v is the volume of element. Finally,

In our case . . I
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where [ is the beam element length and @ = uy — u;. The spin softening stiffness
matrix is:

[K]° = =% (M) + ML) (8)

where

140 0 0O 7 0 0
156 221 0 54 -—13I

e pAl 4% 0 131 =312
sym 156 —22]
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and
0 0 0 O 0 0
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2.2. Dynamic equation of beam in stationary reference
frame

Using the rotating beam model to simulate a shaft, the dynamic equation is

{IM]¢ + [M],} i+ [Glu+ [K|ecu = F'. (11)

Here, u™ = [v;,w;, 0iy, 0;z,vj,w;,05y,0;.], [G] is the gyroscopic matrix, [K]e is
the elastic stiffness matrix and {u},{u},{id} are the displacement, velocity and

acceleration vectors, respectively. The matrix [G] may be expressed as
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Symbols My, M, denote the translational and rotational inertial mass matrices
and 1) is the angular velocity and I = I, = I, is the bending moment of inertia. The
one-dimensional beam models require good modeling techniques to approximate the
three dimensional shaft. The effects of stress stiffening and spin softening are not
included in the beam models as there is no cross-sectional dimension in the analysis.
It is difficult to accurately obtain the calculation results in the rotor dynamics beam
model.

2.3. Dynamic equations of solid in rotating reference frame

Using the solid model in rotating reference frame to simulate a blade, the dynamic
equation is

[M] {iig} +{[C] + [Coonl} i} + { (K] + (o] = 6 [M] } {ur} = {F} . (13)

Here [M] is the global mass matrix, [C] is the global damping matrix, [K] denotes
the global stiffness matrix, [K,] stands for the global prestress stiffening matrix and
—22[M] = —q)? [M] is the stiffness matrix corresponding to the spin softening.

Matrix [K,] can be expressed as

S 0 O
[[Ka] - 0 SO 0 ) (14)
0 0 Sy

R ACARCRICARTRREA B P A (19

Ozz Oyz Oz

and
ONy 9N . ONs
) ) )
Sl=| S GE o S| (16)
81\%1 6132 . 8]%/8
0z Oz 0z

2.4. Dynamics equation of solid in stationary reference
frame

Using the solid model in stationary reference frame to simulate a shaft, the dy-
namic equation is

[M] {ii} +{[C] + (G} (i} + { [K] + [Ko] = 02 [M] } {u} = (F) . (17)

The rotating shaft-bladed system to be modeled must be axisymmetric and the
gyroscopic matrix generated is valid only for the linear analysis. The centrifugal ef-
fects of distributed shafts and mounted blades are included. Stress stiffening and spin
softening are included, which have significant effect on the critical speeds and unbal-
ance response. The rotor dynamics analysis can now predict the whirl amplitudes
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more accurately, rather than just estimating the critical speeds and unstable regimes,
thus improving the design capabilities of the shaft-bladed system [6].By setting the
effects of gyroscopes, prestress and spin softening, formula (17) ({fg} = [Ggyr| {2}
being the gyroscopic moment) could correctly complete the dynamic analysis of the
rotating shaft-bladed system by using the solid model of Ansys version 10.0.

3. Numerical results
3.1. Illustrative example

A helicopter blade radius is 10m (along y axis), its width is 0.23m. The blade
cross-sectional area does not change along the radius. Based on a single blade as an
example, its cross-sectional model is depicted in Fig. 1 and particular points have
the following coordinates:

1: (0,0,—0.14), 2: (0,0,0.06), 3: (0.0133,0,0.09),
4: (0.03,0,0.05), 5: (0.0167,0,—0.04).

Fig. 1. Model of blade

The shaft length is 2.5m with its outer diameter 0.06 m and inner diameter
0.04m. The disk is placed in the axial direction of 1.74m from the rotating blade
center, of the disk thickness 0.08 m and diameter 0.4m. The four blades are far
from the disk, mounted on the outside of the bearing. Bearings of length 0.1 m
are located on the center of shaft 0.1 m and 2.5m. The actual shaft-bladed sys-
tem is connected into a whole solid by the four blades and a shaft. The material
performance parameter is

E=1426-10°Pa, u=0.28, p=1950kgm .
3.2. Calculation results

On the platform of Ansys 10.0, the blade is discretized by a mesh with 6362
nodes and 6478 solid46 elements. Based on different rotating speed, the vibration
model of the blades is calculated in the shaft-bladed system. The Campbell diagram
is given in Fig, 2, and the first swing vibration model as shown in Fig. 3. The
results show that the centrifugal force exerts influence on the different order vibration



frequencies. Spin softening has great influence on the first swing frequency, but only
a little influence on shaking and torsion vibration frequencies. With the variation
of rotating velocity, the coupled vibration among shaking, swing and torsion can
occur because their vibration frequencies change with the different magnitude of the
increase. The coupled vibration is more destructive. The accuracy of the solid model
and the solution techniques have been demonstrated by comparison with the beam

element model.
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The shaft’s Campbell diagram in the shaft-bladed system is given in Fig. 4. The
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Fig. 2. Vibration model of blades
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vibration modes are compared between the solid and beam models. The bending
vibration split into forward whirl mode and backward whirl mode.The bending vi-
bration modes are related with the shaft structure. The torsional vibration frequency
does not change with the increasing speed. The beam model of the shaft does not
take account the stress stiffness and spin softening effects that play an important role
in the solid model. The solid model rotor dynamics provides an accurate solution
for such problems.
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Fig. 4. Vibration model of shaft

The shaking, swing, torsion and their coupled vibration of the shaft-bladed sys-
tem are calculated by solid and beam modes. The calculation shows that the spin
softening has great influence on the first swing frequencies of the blades, but only
a little influence on shaking and torsion vibration frequencies. The shaft bending
vibration split into forward whirl mode and backward whirl mode and the torsional
vibration frequency does not change with the increase of speed. The bending vi-
bration models are related to the shaft structure. With the variation of rotating
velocity, the coupled vibration between the blades and shaft can be induced easily.

A solid model shaft is used here, where centrifugal effects can play significant
role in stress stiffening and spin softening effects, which are not considered in beam
models. A specific advantage of the solid model lies in the fact that the whole model
of the shaft-bladed system can be accounted in one analysis, which is impractical
in beam models. Solid model rotor dynamics provides an accurate solution for such
problems. The work lays a basic foundation for improving the dynamic stability of
the shaft-bladed system.
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4. Conclusion

Shaking, swing, torsion and coupled vibration of the shaft-bladed system are
calculated by solid and beam modes. Calculation shows that the spin softening has
great influence on the first swing frequencies of the blades, but has only a little
influence on shaking and torsion vibration frequencies. The shaft bending vibration
splits into forward whirl and backward whirl modes and torsional vibration frequency
does not change with the increase of the speed. The bending vibration models are
related to the shaft structure. With the variation of rotating velocity, the coupled
vibration between the blades and shaft can be induced easily.

Solid model shaft is used here, where centrifugal effects can play significant role
in stress stiffening and spin softening effects, which are not considered in the beam
models. A specific advantage of the solid model lies in the fact that the whole model
of the shaft-bladed system can be calculated in one analysis, which is impractical in
the beam models. Solid model rotor dynamics provides an accurate solution for such
problems. The work lays a basic foundation for improving the dynamic stability of
the shaft-bladed system.
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